Статьи
9 января 2018
Абсорбционные холодильные машины. Трансформация тепла в холод

 

В прошлых статьях мы поднимали тему утилизации низкопотенциального тепла в промышленном секторе с помощью теплонасосных установок и абсорбционных тепловых машин (АБТМ) в режиме работы тепловых насосов в частности. Такие установки могут использоваться в режиме холодильной машины (АБХМ), обеспечивая охлаждение жидких сред до 5ОС независимо от температуры окружающей среды.

Сегодня предлагаем вам несколько подробнее ознакомиться с технологией и областями ее применения

Из истории вопроса

Первые абсорбционные холодильные машины, разработанные в XIX веке, использовали в качестве абсорбента серную кислоту. Уже в XX веке сам Альберт Эйнштейн приложил руку к созданию одного из таких аппаратов. Но пионером в этой области все же стал французский инженер Фердинанд Филипп Карре (1824–1900). В 1850 году он со своим братом Эдмондом изобрёл абсорбционную холодильную машину, работавшую на смеси воды и концентрированной серной кислоты. Усовершенствованная модель этой машины была запатентована им во Франции в 1859 году, а через несколько лет он представил холодильную машину, работающую на аммиачном цикле.

В наше время в качестве абсорбента наибольшее распространение получил водный раствор бромида лития (LiBr), применяемый в абсорбционных бромисто-литиевых холодильных машинах (АБХМ). Аммиак (NH3) как рабочая среда используется и по сей день в водоаммиачных холодильных машинах (АВХМ), но, поскольку аммиак — взрывопожароопасное сильнодействующее ядовитое вещество, его применение строго регламентируется соответствующими правилами безопасности (ПБ 09-595-03 и т.п.). При этом промышленный объект (участок или площадка), где используется АВХМ, с большой долей вероятности должен иметь статус химически опасного объекта, что сопряжено с дополнительными трудностями для эксплуатирующей организации (вплоть до получения соответствующей лицензии).

Абсорбционные холодильные машины используют двухкомпонентный раствор хладагента и абсорбента. Примечательно, что бромид лития и аммиак в соответствующих типах холодильных машин (ХМ) играют разные роли. Бромид лития играет роль абсорбента, а в цикле АБХМ нагревается и испаряется хладагент — вода. В цикле АВХМ вода используется уже в роли абсорбента, а хладагентом же выступает аммиак. Собственно, физика этих процессов и обуславливает возможность цикла с бромидом лития охлаждать рабочую среду до температуры не ниже 5ОС, в то время как на водоаммиачных холодильных машинах можно получить более глубокий порог охлаждения.

Не следует путать абсорбцию и адсорбцию*. Мы рассматриваем именно абсорбционные холодильные машины, хотя отдельные производители предлагают и адсорбционные установки (в них в качестве хладагента используется вода, а в качестве адсорбента — твердый гигроскопичный силикагель).

Как работает АБХМ?

Абсорбционная холодильная машина — пароконденсационная холодильная установка. Для простоты и однозначности толкования всех терминов рассматриваем одноступенчатую АБХМ (абсорбционную бромисто-литиевую холодильную машину). Сам принцип ее работы основан на способности хладагента (воды) испаряться за счет его поглощения (абсорбции) абсорбентом (бромидом лития). Процесс испарения — эндотермическая реакция — происходит в условиях вакуума с поглощением теплоты, подведенной к Испарителю с охлаждаемой водой (см. рис.1). Концентрированный раствор абсорбента, подающийся в Абсорбер, поглощает пары воды, превращаясь в слабый (разбавленный) раствор. При последующем его нагреве (от внешнего источника тепловой энергии — греющей среды) в Генераторе пары воды выделяются из абсорбента, поступая в Конденсатор, где за счет повышенного давления конденсируются, превращаясь в воду, которая, расширяясь, поступает в Испаритель, тем самым замыкая цикл. Изменение концентрации хладагента в Абсорбере и Генераторе сопровождается изменением температуры насыщения. Для снижения потерь энергии при циркуляции абсорбента между Абсорбером и Генератором устанавливается рекуперативный теплообменник. Для обеспечения работы АБХМ необходимо присутствие еще одного контура — контура охлаждающей воды, предназначенного для отведения от АБХМ низкопотенциальной, «отработанной» тепловой энергии.

Схема

Все процессы в АБХМ протекают под вакуумом, что исключает попадание рабочего вещества и абсорбента во внешние теплоносители.

Классификация АБХМ

В описанной выше схеме охлаждаемая вода — это именно та среда, которую требуется охладить, а греющая среда — это внешний источник тепловой энергии, в качестве которого может использоваться пар (как низкопотенциальный, так и высокопотенциальный), вода различных параметров, горячие дымовые газы котлов, печей или выхлопные газы генераторных установок, а также непосредственно теплота сгорания топлива в самом контуре АБХМ (АБХМ прямого нагрева).

Такая вариативность возможных источников тепла как раз и определяет главную линию классификации, которой придерживаются все современные производители АБХМ:

  • АБХМ нагрева горячей водой (hotwater-fredchiller), использующая в качестве источника тепла горячую воду (от 75ОС и выше);
  • АБХМ парового нагрева (steam-fredchiller), использующая в качестве источника тепла пар (75-200ОС);
  • АБХМ нагрева уходящими газами (exhaust-fredchiller), использующая в качестве источника тепла дымовые газы котлов, печей или выхлопные газы генераторных установок (250-600ОС);
  • АБХМ прямого нагрева (direct-fredchiller), использующая в качестве источника тепла топливо (природный газ, мазут, дизельное топливо).

Таким образом, АБХМ — это холодильная установка, работающая за счет тепловой энергии, а не электричества. Единственные потребители электроэнергии в АБХМ — перекачивающие насосы. Они же являются и единственными движущимися механизмами в составе ХМ.

Эффективность и критерии выбора

Эффективность АБХМ характеризуется холодильным коэффициентом СОР (coefcient of performance), т.е. отношением холодопроизводительности машины к потребляемой тепловой мощности.

Для одноступенчатых АБХМ коэффициент СОР составляет 0,6-0,8. Идеальная одноступенчатая АБХМ могла бы обеспечить холодильный эффект, равный количеству тепловой энергии, подведенной к ней (т.е. СОР=1,0), однако, из-за термодинамических потерь в реальных установках холодильный эффект всегда будет меньше затрат тепловой энергии. Поскольку холодильный коэффициент установок такого типа всегда меньше единицы, одноступенчатые АБХМ целесообразно использовать в случаях, когда есть возможность утилизации тепловой энергии (например, сбросного тепла производств).

В сравнении с одноступенчатыми АБХМ более высокой эффективностью обладают двухступенчатые модели, первый образец которых был разработан в 50-х годах ХХ века. В этих установках, в отличие от одноступенчатых холодильных машин, используется два конденсатора или два абсорбера с тем, чтобы обеспечить более эффективное выделение хладагента из абсорбента при меньших затратах тепловой энергии. В таких машинах коэффициент СОР достигает значения 1,4. В качестве источника тепловой энергии в машинах этого типа может использоваться перегретый пар высокого давления либо различные виды горючего топлива. Двухступенчатые АБХМ целесообразно использовать в тех случаях, когда стоимость электрической энергии высока относительно стоимости топлива. Кроме того, двухступенчатые АБХМ могут применяться в случаях, когда есть источник перегретого пара высокого давления. Их эффективность выше, но при этом они отличаются и более высокой стоимостью по сравнению с одноступенчатыми машинами, что обуславливается в том числе применением дорогостоящих материалов высокой коррозионной стойкости (из-за более высоких рабочих температур в цикле), большей площадью поверхности теплообмена, более сложной системой управления.

Следующий этап развития АБХМ — трехступенчатые абсорбционные холодильные машины. Их холодильный коэффициент СОР заявлен на уровне 1,8. Несмотря на то, что изобретение таких аппаратов пришлось на 80-е годы прошлого столетия, а первая трехступенчатая АБХМ была запатентована еще в 1985 году, аппараты такого класса до сих пор не производятся серийно (несмотря на наличие амбициозных заявлений отдельных производителей), а их назначенный ресурс не подтвержден опытно. Связано это по большей части с уже упомянутой проблемой применения в конструкции установок материалов, стойких к процессам коррозии, происходящим внутри аппаратов при высоких рабочих температурах, которые в трехступенчатых АБХМ еще выше, чем в двухступенчатых. Стоимость таких АБХМ значительна, поэтому экономическая целесообразность их применения должна определяться индивидуально в зависимости от особенностей конкретного объекта.

Воздействие на окружающую среду

Поскольку в АБХМ хладагентом является вода, то они практически не оказывают влияния на озоновый слой атмосферы и развитие так называемого парникового эффекта.

Выбросы (эмиссия) от абсорбционных холодильных машин зависят от условий их применения. Если холодильная машина интегрирована в когенерационную систему и питается тепловой энергией из этой системы, то такая ХМ никакого негативного накапливающегося эффекта для окружающей среды не имеет. Если же рассматривать отдельно взятую АБХМ прямого нагрева, то здесь определяющими факторами будут тип используемого топлива для получения тепловой энергии и применяемая технология сжигания. Природный газ как достаточно дешевый и чистый вид топлива получил наибольшее распространение в АБХМ прямого нагрева. Тем не менее, меры безопасности, касающиеся выбросов вредных газов (оксидов азота в частности), в подобных ХМ должны соблюдаться, а контроль должен проводиться в соответствии с действующими нормативами и регламентами.

В какой бы отрасли промышленности и в какой бы сфере не рассматривался вопрос о применении АБХМ, ключевым фактором всегда будет являться экономическая сторона. Несмотря на специфику задач и технологий различных отраслей, где сегодня находят применение АБХМ (а это металлургия, нефтехимия, энергетика, машиностроение, электроника, пищевая промышленность), ответ на вопрос об экономической целесообразности использования АБХМ везде определяется одинаково. Если на предприятии есть бросовые источники тепла (горячая вода, пар, дымовые и выхлопные газы), которые при ином раскладе доставляют только проблемы, эффект от внедрения холодильных машин ощутим и благоприятно влияет на производство в целом.
Схема 2

 

Валентин Рубцов
Технический менеджер компании «Первый инженер»

Вернуться